
Broken access control

Token vulnerabilities

How do vulnerabilities with (self-contained) JWT tokens arise?

BROKEN ACCESS CONTROL: JWT TOKENS

How do vulnerabilities with (self-contained) JWT tokens arise?

• Cannot be revoked → risk for compromise

• Insufficient signature validation:
• Accepting tokens with no signature

• Accepting arbitrary signatures

• Brute forcing secret key

• JWT header parameter injection

BROKEN ACCESS CONTROL: JWT TOKENS

Can typically not be revoked: server contains no state
→ long expiry means
compromised token
gives long unrestricted
access

BROKEN ACCESS CONTROL: JWT TOKENS

Insufficient signature validation: accepting arbitrary signatures

• Straight up forgetting to validate header

• Accidentally doing ‘decode()’ instead of ‘verify()’

BROKEN ACCESS CONTROL: JWT TOKENS

Insufficient signature validation: Accepting tokens with no signature

{

…

“alg”: “none” → unsecured JWT,

…

}

Means the server will accept any claim, as it cannot be validated

BROKEN ACCESS CONTROL: JWT TOKENS

Brute forcing secret key:

Developers might forget to change test / default placeholder key

↓

Crackable using e.g. hashcat and wordlist of well-known secrets

(hashcat creates a signature of JWT and compares with given signature)

BROKEN ACCESS CONTROL: JWT TOKENS

• Using hashcat, we can bruteforce or use wordlists of common
secret keys

DEMO: CRACKING JWT KEY

JWT Header injection:

• jwk (JSON web key): embedded public key in JWT

• jku (JSON web key set URL): URL from which server can fetch
public key

• kid (Key ID): which key to choose in case there are multiple

BROKEN ACCESS CONTROL: JWT TOKENS

JWT Header injection:

• jwk: should only accept whitelisted keys, otherwise one can sign
one’s own key

• jku: similarly, should only accept trusted domains

• kid: No standard, sometimes points to a file. In case of symmetric
files, could point to e.g. /dev/null (equal to signing the
header with empty string)

BROKEN ACCESS CONTROL: JWT TOKENS

JWT Header injection:

• jwk: should only accept whitelisted keys, otherwise one can sign
with an arbitrary key

• jku: similarly, should only accept trusted domains

• kid: No standard, sometimes points to a file. In case of symmetric
files, could point to e.g. /dev/null (equal to signing the
header with empty string)

BROKEN ACCESS CONTROL: JWT TOKENS

Common vulnerabilities:

• Only validating signature when present

• XML Signature Wrapping (XSW) attack:

BROKEN ACCESS CONTROL: SAML TOKENS (ASSERTIONS)

Passwords

• Three potential methods

• Something you know

AUTHENTICATION

• Three potential methods

• Something you know

• Something you have

AUTHENTICATION

AUTHENTICATION

• Three potential methods

• Something you know

• Something you have

• Something you are

SOMETHING YOU KNOW: PASSWORD

What do you do if you forget your

password?

Forcing complex passwords leads to

frustration for the user

What’s your password?

PASSWORDS

https://d.docs.live.net/173830c124f5b86f/PortaSecura/Work/WebSecurity/Videos/Password%20Lost%20-%20Funny%20Video.mp4
https://d.docs.live.net/173830c124f5b86f/PortaSecura/Work/WebSecurity/Videos/Password%20Lost%20-%20Funny%20Video.mp4
https://d.docs.live.net/173830c124f5b86f/PortaSecura/Work/WebSecurity/Videos/Reset%20Your%20Password-%20a%20SKETCH%20by%20UCB's%20Horse%20%20%20Horse.mp4
https://d.docs.live.net/173830c124f5b86f/PortaSecura/Work/WebSecurity/Videos/Reset%20Your%20Password-%20a%20SKETCH%20by%20UCB's%20Horse%20%20%20Horse.mp4
https://d.docs.live.net/173830c124f5b86f/PortaSecura/Work/WebSecurity/Videos/What%20is%20Your%20Password.mp4

PASSWORD RULES

PASSWORD RULES

• Lists of known passwords

• NordPass

• SplashData

• Keeper

• National Cyber Security Centre

• https://en.wikipedia.org/wiki/Wikipedia:10,000_most_common_passwords

PASSWORD RULES

PASSWORD RULES

PASSWORD RULES

✓ shall be at least 8 characters in length (if chosen by subscriber)

✓ do not store ‘hints’

✓ check passwords against known lists

× no more periodic changes

× no more complexity requirements

NIST Special Publication 800-63-3

Digital Identity Guidelines

PASSWORD RULES

PASSWORD

For example, a user that might have chosen “password” as their password would be relatively likely to

choose “Password1” if required to include an uppercase letter and a number, or “Password1!” if a

symbol is also required.

Users also express frustration when attempts to create complex passwords are rejected by online

services.

Highly complex memorized secrets introduce a new potential vulnerability: they are less likely to be

memorable, and it is more likely that they will be written down or stored electronically in an unsafe

manner.

1 master

password to

remember

password web

app 1

password web

app 2

password web

app 3

password web

app 4

Vault

✓ Secure password generator

✓Online sync

✓ Easy automated fill

✓ Secure storage

PASSWORD MANAGER

SOMETHING YOU HAVE

SOMETHING YOU ARE

• Combination of 2 or more methods of authentication

• Makes pretending more difficult

MULTI FACTOR AUTHENTICATION

POST /login.html HTTP/1.1

Host: www.example.com

username=admin;password=123456

POST /login.html HTTP/1.1

Host: www.example.com

username=admin;password=password

POST /login.html HTTP/1.1

Host: www.example.com

username=admin;password=1234567

8

POST /login.html HTTP/1.1

Host: www.example.com

username=admin;password=qwerty

POST /login.html HTTP/1.1

Host: www.example.com

username=admin;password=12345

✓ Log failed login attempts and send them to your SIEM

✓ Ask for a captcha after X number of failed attempts

✓ Block account after X + Y number of failed attempts

✓ Simply use a good password

Fun to try: http://www.deathbycaptcha.com/user/login

ONLINE BRUTEFORCING

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

OFFLINE BRUTEFORCING

Direct DB access

× Log failed login attempts and send them to your SIEM

× Ask for a captcha after X number of failed attempts

× Block account after X + Y number of failed attempts

✓Secure Password Storage

OFFLINE BRUTEFORCING

PASSWORD NIST GUIDELINES

SP 800-63A

Enrollment &

identity proofing

SP 800-63B

Authentication

and lifecycle mgmt

SP 800-63C

Federation and

assertions

PASSWORD STORAGE

• Plain-text: …

• bad

• (Cryptographic) Hash: e.g. SHA256

• still bad: rainbow tables

• Hash + salt: e.g. SHA256 + CSPRNG

• still bad: bruteforcing

• Slow hash + salt: e.g. argon2 (includes logic to generate salt)

• standard

SECURE PASSWORD STORAGE: SUMMARY

SECURE PASSWORD STORAGE: ARGON2

$argon2id$v=19$m=195312,t=20,p=1$YCICO9c2tXQj+GHX16YKIg$TxX3dHWIwQc8MTRfDlreybV0E2cWmnpaX7z9XqYDaLE

Hashed passwordRandom saltargon2

variant

argon2

revision

memory

consumption

iteration count

and

parallalization

• Demo cracking passwords with hashcat

DEMO

	Broken access control
	Dia 1: Broken access control

	Broken access control: token manipulation
	Dia 2: Token vulnerabilities
	Dia 3: Broken access control: JWT tokens
	Dia 4: Broken access control: JWT tokens
	Dia 5: Broken access control: JWT tokens
	Dia 6: Broken access control: JWT tokens
	Dia 7: Broken access control: JWT tokens
	Dia 8: Broken access control: JWT tokens
	Dia 9: DEMO: Cracking JWT key
	Dia 10: Broken access control: JWT tokens
	Dia 11: Broken access control: JWT tokens
	Dia 12: Broken access control: JWT tokens
	Dia 13: Broken access control: SAML tokens (Assertions)

	Broken access control: Passwords
	Dia 14: Passwords
	Dia 15: Authentication
	Dia 16: Authentication
	Dia 17: Authentication
	Dia 18: Something you know: Password
	Dia 19
	Dia 20: Password rules
	Dia 21: Password rules
	Dia 22: Password rules
	Dia 23: Password rules
	Dia 24: Password rules
	Dia 25
	Dia 26: Password
	Dia 27
	Dia 28: Something You have
	Dia 29: Something you are
	Dia 30: Multi factor authentication

	Broken access control: bruteforcing
	Dia 31
	Dia 32
	Dia 33
	Dia 34: Password Nist guidelines

	Boken access control: Password storage
	Dia 35: Password storage
	Dia 36
	Dia 37
	Dia 38: Demo

